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 Reconstruct the latent image(clear, high-resolution, ...) from its degraded
_measurement noise, down-sampling, ...)

Down-sampling

Dnoising Deblurring Super-Resolution Inpainting
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« Reconstruct the latent image (clear, high-resolution, ...) from its observed
Image or degraded measurement (noise, down-sampling, ...)

« General observation model

y=Hx+n
« H: the observation (degradation) matrix
* n: the additive noise

« Image restoration is a typical //-posed inverse problem. Prior information
Is needed to solve it.
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« Reconstruct the latent image(clear, high-resolution, ...) from its degraded
measurement (noise, down-sampling, ...)

H is an identity matrix
N is a random noise matrix

Denoising
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« Reconstruct the latent image(clear, high-resolution, ...) from its degraded
measurement (noise, down-sampling, ...)

H is a blurring matrix

Dnoising Deblurring
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« Reconstruct the latent image(clear, high-resolution, ...) from its degraded
measurement (noise, down-sampling, ...)

Down-sampling H is a compound matrix of
blurring and down-sampling

Dnoising Deblurring Super-Resolution
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 Reconstruct the latent image(clear, high-resolution, ...) from its degraded
_measurement noise, down-sampling, ...)

““ H is a mask of

Dnoising Deblurring Super-Resolution Inpainting
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« Methodology overview: from classic computer vision to deep learning

e Filtering based methods * Transform based methods ¢ Model based optimization ¢ Deep learning

10



Image restoration: the problem and applications LEES @ o)1

singhua Univer

« Methodology overview: from classic computer vision to deep learning

* Filtering based methods local

e Gaussian filtering

e PDE-based anisotropic diffusion
* Bilateral filtering

* Nonlocal means filtering

 Domain transfer based filtering

Non-local

NS
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« Methodology overview: from classic computer vision to deep learning

* Filtering based methods

e Gaussian filtering

e PDE-based anisotropic diffusion
* Bilateral filtering

* Nonlocal means filtering

 Domain transfer based filtering

NS

local

Smoothing edges while removing noise

Non-local

12
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« Methodology overview: from classic computer vision to deep learning

* Filtering based methods local

* Gaussian filtering A diffusion tensor D is assimilated to a 2 x 2 symmetric and
positive-definite matrix, having then two positive eigenvalues A1, A2

* PDE-based anisotropic diffusion _ )
and two associated orthonormal eigenvectors ul_L u2.

* Bilateral filtering

* Nonlocal means filtering

e Domain transfer filterin
based te g D= ( (; E; ) =)\ 111“{"’/\2 11211;{
[ ]

Non-local Preserving better edges than low-pass filtering

13
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« Methodology overview: from classic computer vision to deep learning

* Filtering based methods

e Gaussian filtering

* PDE-based anisotropic diffusion
e Bilateral filtering

* Nonlocal means filtering

 Domain transfer based filtering

« 1D image = line of pixels
I [ [ [T (T

» Better visualized as a plot

é r EfPdar s

pixel B as L d
intensity lf ., | M J
Pl ]

& .:n -] = o W
pixel position

NS

1
|Oca| BF [I]P = 7 ZGGS (”p_q ”) Go‘, (| Ip _]q I) Iq

p 9ge€S

Non-local

Exploiting both spatial and intensity similarity

14
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« Methodology overview: from classic computer vision to deep learning

* Filtering based methods

e Gaussian filtering

* PDE-based anisotropic diffusion
* Bilateral filtering

* Nonlocal means filtering

 Domain transfer based filtering

NS

local

Non-local

Given a discrete noisy image v = {v(i) | i € I}, the
estimated value N L[v](7), for a pixel i, is computed as a
weighted average of all the pixels in the image,

NL[)(5) = ) w(i.j)v(d).

JEI
A 1 _lleWa) w53,
w(i, j) = 7(2-—)6 i

where Z (i) is the normalizing constant

He (N =2 (N3 4

Z (1) =Ze‘ nZ
J

Exploiting the nonlocal self similarity

15
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« Methodology overview: from classic computer vision to deep learning
| W

* Filtering based methods local [— o

* Gaussian filtering .: - tensit
intensi

* PDE-based anisotropic diffusion Y A

* Bilateral filtering

* Nonlocal means filtering

 Domain transfer based filtering

© intensity
Non-local [
N - \§ \ Bilateral Grid
SN
y
\ X

16

The bilateral grid, that enables fast edge-aware image processing
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« Methodology overview: from classic computer vision to deep learning

* Filtering based methods ¢ Transform based methods global bases

e Gaussian filtering * Fourier transform

* PDE-based anisotropic diffusion Wavelet transform
* Bilateral filtering e Curvelet transform

* Nonlocal means filtering * Ridgelet transform

 Domain transfer based filtering Bandlet transform

Local and Multiscale Geometric bases

NS

17
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« Methodology overview: from classic computer vision to deep learning

* Filtering based methods ¢ Transform based methods

* Gaussian filtering * Fourier transform

* PDE-based anisotropic diffusion Wavelet transform
* Bilateral filtering e Curvelet transform
* Nonlocal means filtering e Ridgelet transform

 Domain transfer based filtering e Bandlet transform

NI YN
o
+%sin(30) Qo @;_/\ \ i/ \
sy N
+%sin(59) o) W
n=9

i oo

Virtually everything in the world can be
described via a waveform - a function of
time, space or some other variable.

All waveforms, no matter what you scribble or
observe in the universe, are actually just the
sum of simple sinusoids of different
frequencies.

N [ Ansin(g,) An :35’-(\4‘{’11)
sy (x) Z a?D + Z e cos(2rfnz) + b, sin(27fnz)

n=1

N-1

X(w) =) a(t;)e 4

=0

“big” sine and cosine wave bases 18
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« Methodology overview: from classic computer vision to deep learning

* Filtering based methods ¢ Transform based methods o . -
A major disadvantage of the Fourier Transform is it

* Gaussian fiItering * Fourier transform captures global frequency information
* PDE-based anisotropic diffusion

Wavelet transform Wavelet Transform, which decomposes a function

* Bilateral filtering * Curvelet transform into a set of wavelets.
* Nonlocal means filtering e Ridgelet transform Wavelets have two basic properties: scale and
 Domain transfer based filtering * Bandlet transform location.

A P

Fi5. (h4E 19

F(W):f RCR IPWT(a.r)wiaf_ f(t)*w(%t)dt
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« Methodology overview: from classic computer vision to deep learning

* Filtering based methods ¢ Transform based methods WT has only a fixed number of directional
L , elements independent of scales.

e Gaussian filtering * Fourier transform

* PDE-based anisotropic diffusion ¢ Wavelet transform

 Bilateral filtering e Curvelet transform ii

* Nonlocal means filtering e Ridgelet transform <

 Domain transfer based filtering Bandlet transform %

v Wavelet

From Fourier dictionary to curvelet dictionary and so on, the dictionary
becomes more and more redundant and over-complete.

20
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« Methodology overview: from classic computer vision to deep learning

* Filtering based methods ¢ Transform based methods ¢ Model based optimization total variation (TV)
e Gaussian filtering * Fourier transform * Regularization based

* PDE-based anisotropic diffusion ¢ Wavelet transform e Sparse representation

* Bilateral filtering e Curvelet transform * Low-rank minimization

* Nonlocal means filtering * Ridgelet transform ¢

 Domain transfer based filtering Bandlet transform

Zero Norm

N

21
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« Methodology overview: from classic computer vision to deep learning

e Gaussian filtering

e PDE-based anisotropic diffusion
* Bilateral filtering

* Nonlocal means filtering

 Domain transfer based filtering

Fourier transform

Wavelet transform
Curvelet transform
Ridgelet transform

Bandlet transform

Filtering based methods * Transform based methods ¢ Model based optimization

e Regularization based
e Sparse representation

e Low-rank minimization

General model:
Fidelity Regularization (Prior)
\ /
min, F(x,y) + 1- R(x)

Based on the image degradation process and the available image priors,
build a model (objective function) and optimize it to estimate the latent

image.

22



Image restoration: the problem and applications

Sparse Representation for image restoration
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A model for sparse solution

ming ||al|lp s.t.Aa = b

« The matrix A is a fat matrix
(underdetermined system)

« There is no solution in general

« The dense solution may not be
useful or effective

« For more robust, we may need a
sparse solution that has many
zero entries

solution

24
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A convex model

Lo-norm vs. L{-norm
ming ||a||, s.t.Aa = b 2 1

e * Geometric illustration
L,-norm minimization is non-convex and NP-hard.
ay Aya

Aa _

ming ||a||{ s.t. Aa = b

L,-norm minimization is tightest convex relaxation of \/( 2 /(

all,

L,-norm minimization .

25
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A relaxed Lq sparse coding model

min, ||[Aa — b||5 + Al|a||,

- _____‘a‘zﬂn‘\\“ﬁ:
. : by /| /llAa— b3
* This is the most widely ey :

used sparse coding
model, which is easy k
to solve and usually a,
leads to a sparse \/{

|

solution. ||

I'.
“‘ 1S

26
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How to adopt sparse coding for Noisy Image
image restoration? R

* Represent (encode) x over a dictionary D, while
enforcing the representation vector to be sparse:

ming |||l s.t. x = D«

* Together withmin, ||[Hx — y||5+ R(x), Iter 3 Iter 5

we have: l /

ming ||HDa — yl||3 + Allell;

* Solving x turns to solving a.
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Why sparse: Bayesian perspective

« Signal recovery in a Bayesian viewpoint

Likelihood Prior

X = argmax, P(x|y) < argmax, P(y|x)P(x)

« Sparse Representation
x=Da«a

» Prior: Assume that the representation coefficients follow some exponential distribution

a~exp (= llell,)
L
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Why sparse: Bayesian perspective

X = argmax, P(x|y) < argmax, P(y|x)P(x
« The MAP solution: 7 1) 7 Y )

a = argmax, P(aly)
argmax, —log P(y|a) — logP(a)
argmin, |[HDa — y||5 +Alall,

« If p=0, itisthe LO norm sparse coding problem
« If p=1, it becomes the convex L1 norm coding problem
« If p=2, it becomes the convex L2 norm problem, which generally has a close-form solution



Image restoration: the problem and applications TIEES

singhua Univ

Why sparsity helps signal recovery?

* Atoy example:

v If you are able to find your another half from all candidates all over the world (i.e., a
large enough dictionary ) , there is a very high probability (nearly 1) that you will find
the one.

* An over-complete dictionary contains almost all possible under a specified scenario. A
sparse solution with an over-complete dictionary often works!

« Sparsity (coefficients) and redundancy (dictionary) are the two sides of the same coin.

7 OB

=

sensetime
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How to obtain a good dictionary? Learning!!!

« Sparse models with a learned over-complete dictionary often work better
than analytically designed dictionaries such as DCT dictionary and wavelet

dictionary.

Why learning

» More adaptive to specific task/data.

» Less strict constraints on the mathematical properties of basis (dictionary
atom).

* More flexible to model data.
« Tend to produce sparser solutions to many problems.
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Applications of IR with Sparse Representation: Denoising

KSVD
Image Denoising Via Sparse and Redundant Representations Over
Learned Dictionaries (TIP 2006), Elad et al.
« LSSC
Non-local Sparse Models for Image Restoration (ICCV 2009), Mairal
et al.
« NCSR
Nonlocally Centralized Sparse Representation for Image Restoration
(TIP 2012), Dong et al.
« OCTOBOS
Structured Overcomplete Sparsifying Transform Learning with
Convergence Guarantees and Applications (IJCV 2015), Wen et al.
+ GSR
Group-based Sparse Representation for Image Restoration (TIP
2014), Zhang et al.
« TWSCA
Trilateral Weighted Sparse Coding Scheme for Real-World Image
Denoising (ECCV 2018), Xu et al.

Noisy Image (24.6 dB, o=15)
e = e T T =3

L} SN <R Al
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Applications of IR with Sparse Representation: Deblurring

Spatially-varying out-of-focus image deblurring with L1-2
optimization and a guided blur map

Unnatural LO sparse representation for natural image
(a) input (d) ours (e) kernels deb|url’ing

« Deblurring Text Images via LO -Regularized Intensity and
Gradient Prior

* Non-Uniform Camera Shake Removal Using a Spatially-
Adaptive Sparse Penalty

« Fast Non-Blind Image De-blurring With Sparse Priors

* Multi-image Blind Deblurring Using a Coupled Adaptive Sparse
Prior

(f) input (1) ours (j) kernels
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Applications of IR with Sparse Representation: Super-resolution

== *ScSR [Web]

*Image super-resolution as sparse representation of raw image patches

= (CVPR2008), Jianchao Yang et al.

3 *lmage super-resolution via sparse representation (TIP2010), Jianchao Yang et
F= al.

% *Coupled dictionary training for image super-resolution (TIP2011), Jianchao

' Yang et al.

*Deep Networks for Image Super-Resolution with Sparse Prior (ICCV2015),

" Zhaowen Wang et al.

*Robust Single Image Super-Resolution via Deep Networks with Sparse Prior
(TIP2016), Ding Liu et al.

*VDSR [Web] [Unofficial Implementation in Caffe]



http://www.ifp.illinois.edu/~jyang29/ScSR.htm
http://cv.snu.ac.kr/research/VDSR/
https://github.com/huangzehao/caffe-vdsr

Image restoration: the problem and applications ¥ 12 G Eiim

Questions on Sparse Representation

« What is a good dictionary?
* How to learn a good dictionary?
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Low-rank minimization for image restoration

36
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Let’s start from PCA

» Principal components analysis (PCA) is one of a family of techniques for taking high-dimensional data, and
using the dependencies between the variables to represent it in a more tractable, lower-dimensional form,

without losing too much information.

» It transforms the data to a new coordinate system such that the greatest variance by some scalar projection of
the data comes to lie on the first coordinate (called the first principal component), the second greatest variance

on the second coordinate, and so on.

* In order to maximize variance, the first weight vector w(1) thus has to satisfy
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From the perspective of low-rank

o N samples X = [z1,x2,...,zx] € RV that are centered

e PCA: seeks r directions that explain most variance of data

”X - L“F minimize ||M — L

MINIMIZE],.rank(L)=r subject to  rank(L) < k.

o best rank-r approximation of X

® 9 a
L] @
e .oO o’ o o o
@ 2e°e © o @
® . .. . ..'
e o ® o -
@ k] ° o ®
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Data representation

Y = X + E

Each column corresponds The desired latent low- The residual matrix
to a sample rank matrix
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Visual data often has an intrinsic low rank structure




Image restoration: the problem and applications %242 i

singhua Univ sensetime

Nuclear norm minimization

Considering the fact (i.e., prior) that the input vectors are highly correlated, we can take them as a 2D low rank matrix

and minimize its rank:
Rank(X) = ) lloi(0)ll;

The above rank function is non-convex. A convex relaxation of it is the so-called nuclear norm:

IXIl. = ) (Xl



Image restoration: the problem and applications %27 o Eim

Nuclear norm minimization

Nuclear norm minimization (NNM) can be used to estimate the latent low rank matrix X form Y via the following
unconstrained minimization problem:

X = argminy||Y — X||%2 + 2| X]|.
Closed form solution (Cai, et al., SIAM10)

X=US;(2)VT
where Y = UXVT is the SVD of ¥, and

S3(E); = max(Z; —2,0)
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Background modeling

(a) Original frames (b) Low-rank L (c) Sparse S (d) Low-rank L (e) Sparse S

Convex optimization (this work) Alternating minimization [47]
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(¢) VNL (PSNR: 24.36 dB) (f) BPDL (PSNR: 26.57 dB) (2) NNM (PSNR: 25.45 dB) (h) WNNM (PSNR: 27.11 dB)
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Image Denoising

| ’ ’.'..A -

Wy S SR = A\ Ll
(b) Noisy image ( PSNR: 8.10dB) (c) BM3D (PSNR: 22.52dB) (d) EPLL (PSNR: 222




Image restoration: the problem and applications

Deep learning for image restoration

46
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« Methodology overview: from classic computer vision to deep learning

CNN
e Filtering based methods * Transform based methods ¢ Model based optimization ¢ Deep learning
e Gaussian filtering * Fourier transform * Regularization based * SRCNN
* PDE-based anisotropic diffusion ¢ Wavelet transform e Sparse representation  VDSR
* Bilateral filtering e Curvelet transform * Low-rank minimization * ESPCNN
* Nonlocal means filtering * Ridgelet transform ¢ * GAN: SRGAN
* Domain transfer based filtering e Bandlet transform e Transformer: IPT

NS

Transformer

a7
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* Learn a compact inference or a mapping function
from a training set of degraded-latent image pairs.

* General formulation:

Loss function  Set of parameters to be learned

\ \
mingloss(x,x) s.t.x = F(y,H;0)

* Key issues
* The availability of paired training data
* The design of learning architecture
* The definition of loss function

48
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Why deep learning?

e Strong learning capacity
End-to-end learning for the inference/mapping function
Deeper architecture for strong and distinct image priors

* Architecture design
Residual learning or other structures
Batch normalization and other network regularizations
Various blocks, e.g., Conv, Deconv, Pooling, ...

e Optimization algorithms
SGD, momentum SGD, Adam,......

* Speed
GPU/NPU/DSP

49
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General pipeline

Architect P ..
The problem [ FETIITECTUTE N ropare L d Model training
design training data

o . . . .
» . ‘ -

Testing Phase Degraded image

50
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Image restoration: the problem and applications

NTIRE 2021 image challenges

« Nonhomogeneous Dehazing

started!

« Defocus Deblurring using Dual-pixel

started!

Depth Guided Image Relighting: Track 1 One-to-One relighting
started!

« Depth Guided Image Relighting: Track 2 Any-to-Any relighting
started!

« Perceptual Image Quality Assessment

started!

« Image Deblurring: Track 1 Low Resolution

started!

« Image Deblurring: Track 2 JPEG Artifacts

started!

« Multi-Modal Aerial View Imagery Classification: Track 1 (SAR)
started!

« Multi-Modal Aerial View Imagery Classification: Track 2 (SAR+EOQ)
started!

« Learning the Super-Resolution Space

started!

TE R &

Tsinghua University

O Eiiin
sensetime

Challenge: New Trends in Image Restoration and Enhancement

NTIRE 2021 video/multi-frame challenges

Quality enhancement of heavily compressed videos: Track 1 Fixed QP, Fidelity

started!

Quality enhancement of heavily compressed videos: Track 2 Fixed QP, Perceptual

started!

Quality enhancement of heavily compressed videos: Track 3 Fixed bit-rate, Fidelity

started!

Video Super-Resolution: Track 1 Spatial

started!

Video Super-Resolution: Track 2 Spatio-Temporal
started!

Burst Super-Resolution: Track 1 Synthetic

started!

Burst Super-Resolution: Track 2 Real

started!

High Dynamic Range (HDR): Track 1 Single frame
started!

High Dynamic Range (HDR): Track 2 Multiple frames
started!
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Super-resolution via CNN (SRCNN)

n, feature maps ny feature maps
of low-resolotion image of high-resolution image

f2 % fa fs % £y

= = f@::—:
W7

| |
Non-linear mapping Reconstruction

N High-resolution
A image {output)

Patch extraction
and representation

Fig. 2. Given a low-resolution image Y, the first convolutional layer of the SRCNN extracts a set of feature maps. The
second layer maps these feature maps nonlinearly to high-resolution patch representations. The last layer combines
the predictions within a spatial neighbourhood to produce the final high-resolution image F(Y).

256x256 (input, bicubic interpolation) — 256 x 256 x 64 (feature map of
Convl) — 256 x 256 x 32 (feature map of Conv2) — 256 x 256 (output)

53
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Very deep CNN for SR (VDSR

Conv.D (Residual)

Figure 2: Our Network Structure. We cascade a pair of layers (convolutional and nonlinear) repeatedly. An interpolated low-resolution
(ILR) image goes through layers and transforms into a high-resolution (HR) image. The network predicts a residual image and the addition
of ILR and the residual gives the desired output. We use 64 filters for each convolutional layer and some sample feature maps are drawn
for visualization. Most features after applying rectified linear units (ReLu) are zero.

54
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SR by GAN (SRGAN): motivation

i Natural Image Manifold
MSE-based Solution

"pixel-wise average
=== of possible solutions”

* MSE-based solution appears overly smooth due to the pixel-wise average of possible
solutions in the pixel space.
* Using GAN (Generative Adversarial Network) to drive the reconstruction towards the
natural image manifold producing perceptually more convincing solutions. 55
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Image processing Transformer

| Multi F;d_____;.‘;.fe{ ~ _ Flattenfeatures | K
| ne? ™ iy Moy Uiy, Wiy, |
|

| f (S S S |
| i : ; b
| ====== Transformer Encoder |

;: EEEEEN I
I
I Features %I%%%éﬁ% I
I r':::::::::::::::_:::::::_ |
I Task embedding |
| x2 Up Features | B
I Head Jaimans A

|| HTTTTT] | |
I SENENEN |
. | . I EEEEEN . I .
. | . 11 Transformer Decoder ====== * .

| L EEEEEN I_
I ¥ |
| 11 |
| |

Figure 2. The diagram of the proposed image processing transformer (IPT). The IPT model consists of multi-head and multi-tail for
different tasks and a shared transformer body including encoder and decoder. The input images are first converted to visual features and
then divided into patches as visual words for subsequent processing. The resulting images with high visual quality are reconstructed by
ensembling output patches. 56
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Outline

Part 1

Part 2

Image Restoration: Problems and Methods

Generative Image Models for Image Restoration

57
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Generative Image
Models

Part 1

Part 2

Part 3

Part 4

Why Generative Image Models

Explicit Density Image Models

Generative Adversarial Networks

Generative Image Models Beyond GANs

58
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B Generative Image Models

» Machine learning models are either discriminative or generative
» Discriminative image models observe images, and map them to the data of another space

» Generative models observe the images, and learn how they are generated

59
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B |earning to Regress Target Images: Best Image Restoration Pipeline?

L0SS =||Ipreq — Ioe||”

(00++ 00]3

Image source: Learning a Deep Convolutional Network for

Image Super-Resolution, ECCV 2014 60
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B Regressing Target Images DO NOT Learn Good Image Restoration

Assume we have a infinitely large dataset, such that every corrupted image has many and
many possible groundtruth versions.

lgt1

Iinput = Iprea < Igez
Igt3

61
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B Regressing Target Images DO NOT Learn Good Image Restoration

Assume we have a infinitely large dataset, such that every corrupted image has many and
many possible groundtruth versions.

j”lpred o IgtHZP(IgtlIinput) Iinput - Ipred < Igtz
Iges

What we minimize:

62
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B Regressing Target Images DO NOT Learn Good Image Restoration

Assume we have a infinitely large dataset, such that every corrupted image has many and
many possible groundtruth versions.

What we minimize:

Itl

g
f”lpred o IgtHZP(IgtlIinput) Iinput - Ipred < Igtz
I

gt3

This is minimized by the weighted average of all groundtruths of I;,,,,;;.

Ipred — flgtp(lgtllinput)

Photometric losses, such as L2 distance, tend to smooth out high-frequency image details.

63
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B learning to Sample, Instead of Learning to Regress

A deep CNN that learns

statistical mean of input |:>

No high frequency details

Image source: http://pulse.cs.duke.edu/, https://laptrinhx.com/how-to-train- 64
stylegan-to-generate-realistic-faces-1888828401/



http://pulse.cs.duke.edu/

Introduction to Generative Image Models IEES 5 i

Tsinghua University sensetime

B learning to Sample, Instead of Learning to Regress

A deep CNN that learns

statistical mean of input |:>

No high frequency details

What is better: learn a
distribution of real human faces

Image source: http://pulse.cs.duke.edu/, https://laptrinhx.com/how-to-train- 65
stylegan-to-generate-realistic-faces-1888828401/
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B learning to Sample, Instead of Learning to Regress

A deep CNN that learns
statistical mean of input I:> - -

No high frequency details

—

What is better: learn a Fi“f’ one sample X that
distribution of real human faces satisfies: LR(x) = input

Image source: http://pulse.cs.duke.edu/, https://laptrinhx.com/how-to-train- 66
stylegan-to-generate-realistic-faces-1888828401/
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® Natural Image Distribution: The Ideal for Image Restoration

Corrupted

human face
|deal reconstructions Natural image distribution of faces
(a conditional distribution) (the marginal distribution)
Image source: Lugmayr et al, ECCV 2020: http://de.arxiv.org/pdf/2006.14200/ Video source: https://www.youtube.com/watch?v=AnlUiFMD5Iw
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B Generative Image Models: Learning the Distribution of Natural Images

- -
7
/,’/ 1 : [ [ [ea—— -
- * .ﬁ. s H‘

// - vl 7]
~ o [ &
~
\\ e
~
~
\\

A learned
distribution of
llcatll

A trammg dataset of cat

Probability |
Density

—0—0— 0000000000 0O ® @ > —0—0— 0000000000 0O ® @ >

______ True distribution: p*(x) —— Learned distribution: p(x)

Image source: http://thesecatsdonotexist.com/ 68
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Sampling from the learned
distribution: x~p(x)

A learned distribution p(x) Generated samples

Generative models allow us to create new data that does not exist.

Image source: http://thesecatsdonotexist.com/ 69
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B Taxnonomy of Generative Models

Generative Models

Tractable density

> NADE/MADE

> PixelRNN/PixelCNN

> Flow-based:
Glow/RealNVP

Approximate density

T

Direct sampling

Markov sampling

Variational Markov Chain

> Generative
Adversarial
Networks

> Variational » Boltzmann Machine

Autoencoder

> Generative
Stochastic
Networks
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Why Generative Image Models

Explicit Density Image Models

Generative Adversarial Networks

Generative Image Models Beyond GANs
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B Explicit Density Models learns the density P(x) of image pixels explicitly

For a low resolution image (e.g. 128*128), we need to model the joint distribution of 16k variables!
Modeling the joint dependency over massive variables is difficult.
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B Explicit Density Models learns the density P(x) of image pixels explicitly

For a low resolution image (e.g. 128*128), we need to model the joint distribution of 16k variables!
Modeling the joint dependency over massive variables is difficult.

B PixelRNN: Assume decomposable likelihood using chain rule

n
PG = | | PCilry, 2y 2io)
Y =1 \ Y }

Likelihood of image Probability of ith pixel value given previously
generated pixels

(which we model with a neural network!)
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B Explicit Density Models learns the density P(x) of image pixels explicitly

For a low resolution image (e.g. 128*128), we need to model the joint distribution of 16k variables!
Modeling the joint dependency over massive variables is difficult.

B PixelRNN: Assume decomposable likelihood using chain rule

n
PG = | | PCilry, 2y 2io)
Y =1 \ Y }

Likelihood of image Probability of ith pixel value given previously
generated pixels

(which we model with a neural network!)

Testing: generate an image via x,~P(xg), x1~P(x1|xg), x3~P(x2]x1, xo), €tc.

Training: maximize the joint likelihood of a image dataset: max, [T, P(x;)

74



Explicit Density Models

B PixelRNN [van der Oord et al. 2016]

Generate image pixels staring from the corner

O O O 0 @
O O O O O
O O O O O
o O O O O
O O O O O
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B PixelRNN [van der Oord et al. 2016]

Generate image pixels staring from the corner

4
O O O O O
o O O O O
O O O O O

And proceed to the nearby pixels

O O O
O O O
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B PixelRNN [van der Oord et al. 2016]

Generate image pixels staring from the corner

) 4

And proceed to the nearby pixels

Generating the current pixel is dependent on the
triangle context from top-left region (RNNs like
LSTM/GRUs are adopted to memorize this context)

O O

O O O
O O O 0 @
O O O O O
O O O O O
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B PixelRNN [van der Oord et al. 2016]

Generate image pixels staring from the corner

And proceed to the nearby pixels

Generating the current pixel is dependent on the
triangle context from top-left region (RNNs like
LSTM/GRUs are adopted to memorize this context)

O O O
O O O O
O O O O O

For each pixel, output the softmax probability of O
pixels value over 0~255 O O

More details referred
to extended reading
materials

P(xi|xqy, x5, ..., x;_1)~Softmax(0, 1, 2, ..., 255)

Figure copyright van der Oord et al. 2016
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Explicit Density Models

B Pros and Cons of PixelRNN

Pros

> Very intuitive

> Calculation of P(x) is tractable
» Good sample quality

Cons

» Very slow training/inference, generation must
be sequential (e.g. taking 5 days on 8 GTX Titans
to be trained on 32*32 CIFAR dataset)

» Cannot learn long-range context well

—_—n . W
;! OO EIm
sensetime

- .
Glhﬁ&lﬁﬁﬂ.

Generated 32*32 images by training on ImageNet

Figure copyright van der Oord et al. 2016
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B Variational Autoencoder (VAE)

Some background: Autoencoder
X — Xinll?
____________________ > Reconstruct input  *"Ttteeeeeal

3 | Image x I:> NN Encoder I:{>V2§Qrt Z:>_|:> _

e.g. 128x128 e.g. 1x64

.' . - Vﬁ
t' i’.—'

e i = NS
-.El.ﬁ Encoder: 4-layer conv. ..E.nn
.san Decoder: 4-layer upconv. nn.snn
b < M sl < IS5

Image source:
InpUt data http://cs231n.stanford.edu/slides/2019/cs231n_2019 lecture11.pdf Reconstructed data
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B Variational Autoencoder (VAE)

From AE to VAE

Ix — x|l
_____________________ > Reconstruct input  *TTTTreee
o Latent e
“ Image x ——> NN Encoder —) I::>_|:>
vector z |
e.g. 128x128 e.g. 1x54
AX1
The mapped
observation x is
high-dimensional, 7
lying in a complex,

uninterpretable

distribution /x3 N
l > X9
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D

B Variational Autoencoder (VAE)

From AE to VAE

.g. 128x128

The mapped
observation x is
high-dimensional,
lying in a complex,
uninterpretable
distribution

==

Reconstruct input

|x _Xinllz

e.g. 1x64

\
i
i
L -
—4,
i

==

—> NN —

L
Image x ——> NN Encoder I:{>V2§Qrt ZI:>_I:>

R

-———a_
-~

-

o R R )

e

i it S
e e e )
hnm R BB
nmm R
R
e

=
e
e
e
e
=

Saaant

T
man

o
o
=

amn

an
s

> Z)

If the latent
distribution z is
low-dimensional,
and simple, then
everything will be
easier!
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B Variational Autoencoder (VAE)
1 — X |

VAE: Compress distributions + Reconstruct input

- -
-
-
-
-
-
-
-

% Image x —> NN Encoder, —)Sample ——) z

e.g. P(z|x)
P2)

The prior of latent vector z is assumed simple (e.g.
multivariate Gaussian), which allows efficient sampling of

Sampled P(z) instead of the more complicated P(x)

images from
VAE

Image source: https://medium.com/vitrox-publication/generative-modeling-with-
variational-auto-encoder-vae-fc449be9890e
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B Variational Autoencoder (VAE)
1 — X |

VAE: Compress distributions + Reconstruct input

R
s
-
-
-
-
-
-

e ERE B
P(z)

P(x)

VAE optimizes intractable maximum likelihood, which is approximated by a tractable lower bound

N
maxg HP(Xi), where P(x) = | P(z)P(x|z) dz
i=1

This conditional is

This is a simple prior
> mpie pri modeled with NN
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B Variational Autoencoder (VAE)
1 — X |

VAE: Compress distributions + Reconstruct input

The prior of latent vector z is assumed simple (e.g.
multivariate Gaussian), which allows efficient sampling of
P(z) instead of the more complicated P(x)

Yet the reconstruction loss is independent for each pixel,
which we know blurs the results

Images and VAE reconstructed versions e
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Generative Image
Models

Part 1

Part 2

Part 3

Part 4

Why Generative Image Models

Explicit Density Models

Generative Adversarial Networks

Generative Image Models Beyond GANs
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m So far..

Explicit density models all make efforts on approximating the marginal density P(x).

PixelRNN Variational Autoencoder
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m So far..

Explicit density models all make efforts on approximating the marginal density P(x).

PixelRNN Variational Autoencoder

The evil lies in modeling the complex marginal P(x). Do we really have to?
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m Sofar...

Explicit density models all make efforts on approximating the marginal density P(x).

PixelRNN Variational Autoencoder

The evil lies in modeling the complex marginal P(x). Do we really have to?

The answer depends. If you build modes for outlier detection, yes

89
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B Just an Episode: Modeling the DenS|ty P(x) for Outlier Detection

Cars +

utlier!

~_
A learned distribution p(x)

> Wheels

Generative model detects outliers that do not match the training distribution. It is desired for perception
systems (e.g. auto-driving) to detect anomalies before a wrong decision is made.
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Explicit density models all make efforts on approximating the marginal density P(x).

PixelRNN Variational Autoencoder

The evil lies in modeling the complex marginal P(x). Do we really have to?

The answer depends. If you build modes for outlier detection, yes

However in most cases, we only care about sampling: x ~ P(x), not exactly modeling P(x)
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B Generative Adversarial Networks

In GANSs, we learn a generator that reconstructs high fidelity samples from latent vectors (noise)

Image source: Ward et al., 3D Surface Parameterization Using Manifold
Learning for Medial Shape Representation, 2007

A AX
Z1 1

Fake images ?
(from generator) B

A

EHEGE R R
SEEREREaREE
EnEaE Z

Generator / X3 Lt
>Z, > x,

+ Latent vector space The observation space

Latent vector z
(also called noise,
sampled from a
simple prior)
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B Generative Adversarial Networks

In GANSs, we learn a generator that reconstructs high fidelity samples from latent vectors (noise)

Image source: Ward et al., 3D Surface Parameterization Using Manifold
Learning for Medial Shape Representation, 2007

X1

A learnedloss function characterizing
how good the generated samples are,,
providing training signals Zq

Fake images
(from generator)

A

R bR
bbbl By B

LEELLLE e
T E

Generator

%, %,
+ Latent vector space The observation space

Latent vector z
(also called noise,
sampled from a
simple prior)

> 79>
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B Generative Adversarial Networks

Learning a metric of the true density P(x) is difficult. Solving it is the most amazing part of GAN.

Real/fake
f

Discriminator

T
Fake images /’ ;
(from generator) e ol ‘
A

Generator

S —

Latent vector z
(also called noise,
sampled from a
simple prior)

Real images (from
training data)
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B Generative Adversarial Networks

Learning a metric of the true density P(x) is difficult. Solving it is the most amazing part of GAN.

Real/fake
f

Discriminator

T
Fake images ;” E
(from generator) . v i
—

e — Adversarial training:

1 » Discriminator: attempts to distinguish between
real/make images, i.e. via binary classification

» Generator: struggles to fool the discriminator, e.qg.
making generated images classified as real

Real images (from
training data)

Latent vector z
(also called noise,
sampled from a

. . 95
simple prior)
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B Generative Adversarial Networks
Learning a metric of the true density P(x) is difficult. Solving it is the most amazing part of GAN.

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Emmpduta ]'Og I'Ded (:L')I + Ezmp(z) ]Dg(l _IDed (Gﬂg (z))?i|

0, 64

Discriminator output Discriminator output for
for real data x generated fake data G(z)

Alternate between:
1. Gradient ascent on discriminator

max I:E-I:diata lﬂg Dﬂd (:’E) + ]EZNP(?-‘] lﬂg(l _ Dﬂd (Gﬁ'y (z)))} Source:

0a http://cs231n.stanford.edu/slides/2019/cs231n 2019

lecture1.pdf
2. Gradient descent on generator _lecture11.p

Héin Ezmp{z) log(1 — Dy, (Gﬁg (3)))
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Generative Adversarial Networks

B Why We Love GANs

* GAN - Generative Adversarial Networks
* 3D-GAN - Learning a Probabllistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
* acGAN - Face Aging With Conditional Generative Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

* Contex1-RNN-GAN - Contextual RNN-GANS for Abstract Reasoning Diagram Generation

¢ C-RNN-GAN - C-RNN-GAN: Continuous racurrant naural natwarks with adversarial training

* CS-GAN - improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

* CVAE-GAN - CYAE-GAN: Fine-Graned image Generation through Asymmetric Training

* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs o CycleGAN - Unpaired Image-to-Image Translation using Cycle-Cansistant Adversarial Networks

* AdaGAN - AdaGAN: Boosting Generative Models « DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

* AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

: 2 i N - t . Relath wh tive Adh | Notwork:
o AHfGAN - Amortised MAP Inference for Image Super-resolution DiscaGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Notworks

) . DR-GAN - Disentangled Representation Learning GAN for Pase-Invariant Face Recognition
* AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

DusiGAN - DualGAN: Unsupervised Dual Learming for image-to-image Translat:on
EBGAN - Energy-based Genarative Acvarsarial Natwork
f-GAN - -GAN: Training Generative Neural Samplers using Variational Divergence Minimization

* ALl - Adversarially Learned Inference
*« AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization
* AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
o ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs * GAWWN - Learning What and Where to Draw
- ; ' - i ject Transt t ) 1 i
o b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
i8n G Dee g hi lici " Geometric GAN - Geometric GAN
* Bayesisn GAN - p-and Hierarchical Impicit Models * GoGAN - Gang of GANs: Generative Adversarial Netwarks with Maximum Margin Ranking
* BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks

FF-GAN - Towards Large-Pose Face Fromaization in the Wild

GP-GAN - GP-GAN: Towards Realistic High-Resolutian Image Blending
BiGAN - Adversarial Feature Learning IAN - Neural Photo Editing with Introspective Adversarial Networks
IGAN - Generative Visua! Manipulation on the Natural Image Manifoid
IcGAN - Invertible Conditional GANs for image editing

BS-GAN - Boundary-Seeking Generative Adversarial Networks
CGAN - Conditional Generative Adversarial Nets

: # ¢ . . . : * ID-CGAN - | -raining Usi ional t } Netwoark
* CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters . s A N R R S R et ot e

3 N . . roved GAN - Improvad Techniques for Training GANs
with Generative Adversarial Networks " 9 g

o InfoGAN - InfoGAN: interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks « LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

» CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

* CoGAN - Coupled Generative Adversarial Networks * LAPGAN - Deep Generative image Models using a Laplacian Pyramid of Adversarial Netwarks

» GAN is an active research area with astonishingly large family.

» GANs are applied to almost everywhere, e.g. computer vision, NLP, medical imaging,
biocomputing, speech recognition, etc.

» Why we love GANs so much? 97
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B Why We Love GANs: Really High Quality Sample Generation

2014 2015

2016
The OG GAN DCGAN
Coupled GAN _
OG GAN: Goodfellow et al. Generative Adversarial Networks, 2014 Prog reSSIVer
DCGAN: Radford et al. Unsupervised Representation Learning with Deep Convolutional Growing GAN
Generative Adversarial Networks, 2015

2018

Progressively Growing GAN: Karras et al. Progressive Growing of GANs for Improved Quality, SterGAN

Stability, and Variation, 2017

StyleGAN: Karras et al. A Style-Based Generator Architecture for Generative Adversarial 98
Networks, 2018

Coupled GAN: Ming-Yu et al. Coupled Generative Adversarial Networks, 2016


https://twitter.com/goodfellow_ian/status/969776035649675265

Generative Adversarial Networks %17 o Eim

ua Univer:

B Why We Love GANs: Really High Quality Sample Generation

Why high quality samples?

The natural image manifold, only a two-dim cartoon. Most space is empty

(images do not look natural).
Image source: MIT 6.5191 (2018): Deep Generative Modeling 99
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B Why We Love GANs: Really High Quality Sample Generation

Why high quality samples?

X2 X2

X1 - — X1

To satisfy joint likelihood objective the probability To satisfy GANs objective only need to model a
mass needs to spread over the manifold portion of it instead of whole (but with high quality)

Image source: MIT 6.5191 (2018): Deep Generative Modeling 10C
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B Example: SRGAN/ESRGAN

SRResNet SRGAN-VGG54 original HR image Generator Network B residual blocks

A

k9nB4s1 ' k3nBds1 k3nB4si

' k3nB4s1

e

k9n3s1

k3n256s1

skip connection

Discriminator Network k3n128s2 Kk3n256s2 k3051282
K3n64s1 k3nB4s2 k3n128s1 k3n256s 1 k3n512s1

1_

ESRGAN: https://arxiv.org/abs/1809.00219 101

SRGAN: https://arxiv.org/abs/1609.04802
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Generative Adversarial Networks TS R@ ol:1T

. Example: PU LSE Image source:

https://en.wikipedia.
org/wiki/Surface_(to
pology)

FSRGAN(x8) PULSE(x8)

LR

PULSE(x64)

Find a latent vector z that satisfies

|d0wnsample(G (2)) — Il-nput| <&

PULSE: https://openaccess.thecvf.com/content CVPR 2020/papers/Menon PULSE Self-
Supervised Photo Upsampling via Latent Space Exploration of Generative CVPR 2020 paper.pdf 10z
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B GANs are in Active Research

CLAPGAM, 2015 {Laplazian pyramid coding]
LI:III:EAI\I. 2006 [Transpased canvelution in general

Proposed GANs Taxonomy
T

SBEGAM, 2017 (Autorncoder as discriminator)

r Network architecture ; —— i
L ":?GAN. 2017 {Progressive manner during traini — AutnGAN, 2018 (multi-level archi re search) o~ __ oo R
T T TrT— ["WHN. 2019 (Deeper net and larger batch size} e i R G o
¥LG, 2020 (A local sparse attention layer | T ¥ a
| CGAN, 2014 {Label infa intn discriminstor and ge _[ SAE-GAN, 2017 (daniliary classifier) TS o 7
revatir) SnFoGAN, 2016 {Classifier for Labels) PROGAN 2017
. [ o ~
/Architecture [ | atent space {.Bﬂim. 2016 (Encodar for learming inverse mappi B v O ' ‘ B'QGAN 2018
ngl T R
5 e, S Vi O | ot
3SGAM, 2016 (Multi-headed layer in discriminatar] . g P MSG‘GAN 2020, |y
CycleGAM, 2017; DiscoGAN, 2017; DualGAN, 317 — Image style transfer S e A ! ,’
- ST - ,
SRGAM, 2016 — Image super-resohition A r‘ i ,‘f—‘
StybeGAN, 2019 | Scale-specific face generation BEG 201 7 .‘ : ‘ SAGAN '201 8
" Application focused | Face Completion GAN, 2017 Face completion ‘

AlphaGAN, 2018 — Image matiing
Moco-GAN , 2018 — DVD-GAN, 2019 — Video generation
SinGAN, 2019 — Image manipulation |learned by ane image

LAPGAN. 2015
DCGAN. 2016

Orngmal GAM 2014 -Yllﬁ 2020

191 based

2= RGAN, 2018 (Integral probability meitric)
‘[ PWGAN, 2017 [Wasserstein distance]

"Geomatric GAN, 2017 (Hings lass] — Sphere GAN, 2018 (Rismannian manifalds]
“FOGAN, 2004 [J5 divergence] SLEGAN, 2016 (Pearsan divergence] — 1-GAN, 2016 (divergence)

\i SGAN 12016 .7/

l 1
| PR

|
|

|

|

|

|

!

|

|

|

> i
~ | ( :

i

|

¢

"'IIEAN, 2016 (Second arder gradient oss) S~ L Mode diversit
.::?il:grilgm margin between real 3 AC GAN 2017.\' ‘ y
I.BSll" -8 WGAN-GR. 2017 (Gradient penalty an WGAM ) ‘ I'GANS 2019

'|Regularizatinn M
CeeSH-GAN, 2018 (Spectral normakzation)
| S5-GAN, 2019 (Self-supervision sveid discriminag

- WGANCT, 2018 [Salt consistency an WEAN)

WEAN-LR 2017 (Lipschite penalty on WGAN, less
sensitive)

MRAGAN. 2016 {Penalize missing modes)

or fergetting]

Image source: https://arxiv.org/pdf/1906.01529v6.pdf

Image quality

103



%

sensetime

Generative Image
Models

Part 1

Part 2

Part 3

Part 4

Introduction to Generative Image Models

Explicit Density Models

Generative Adversarial Networks

Generative Image Models Beyond GANs
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B GANs are Not Robust (Mode Collapse)

What kind of distributions do GAN learn?

Image source: MIT 6.5191 (2018): Deep Generative Modeling

_Z

-
-_—

\
h
.

Xl

To satisfy GANs objective we only need to
_ o model a portion of P(x) (though with high visual
Failure samples Limited modes quality) instead of the whole of it

108
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Face Restoration
Image source: https://arxiv.org/pdf/2101.04061.pdf

Real face to anime

Image source: https://arxiv.org/pdf/1907.01424.pdf
10¢
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B GANs are Not Robust

Explicit Density Models are often more robust (they maximize the joint likelihood of the full dataset.)

X2 A2

\\ N

P
-

X1 — X
To satisfy joint likelihood objective the probability To satisfy GANs objective we only need to
mass needs to spread over the manifold model a portion of P(x) (though with high visual

Image source: MIT 6.5191 (2018): Deep Generative Modeling quality) instead of the whole of it
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B VQ-VAE

Recap the VAE: Learning compact representation of image

Ix — x5, 1%
» Just reconstruct input! <" ===

R
e —--
-
-
-
-
-

e.g. P(z|x)

A continuous distribution (e.g. multi-variate Gaussian)

10¢



Generative Image Models Beyond GANs

B VQ-VAE
Quantized VAE

Ix — x5, 1%
» Just reconstruct input! <" ===

R
e —--
-
-
-
-
-

e.g. P(z|x)

Replace the continuous distribution with a discrete one (i.e. a collection of latent vectors)
10¢
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B VQ-VAE

Quantized VAE: Learning discrete latent representations

The latent representation is a spatial
composition of words in dictionaries
= '  (reduced to word indices!)

™

o

1

' 9 ﬂ | 1a] [ I :> 11 16
2

A discrete distribution
(set) of latent vectors

Image source: https://arxiv.org/pdf/1711.00937.pd1 \ j 11
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B VQ-VAE

PixelRNN: Learns rich spatial relations among pixels, good sample quality, slow inference.
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B VQ-VAE

Learn spatial relations of image patches with PixelRNN. This makes sampling fast while inherits spatial
modeling of PixelRNN
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B VQ-VAE

Quantized VAE: Learning discrete latent representations

The latent representation is a spatial
composition of words in dictionaries
(reduced to word indices!)

[4]] r

> P
/S // / /e
o S i

o L L L

ot

=N

sensetime

/ // //,-/

| =k

53

A discrete distribution
(set) of latent vectors

Image source: https://arxiv.org/pdf/1711.00937.pd1 \ ' j

Using a PixelRNN to generate
this code map!
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B VQ-VAE
VQ-VAE-2: hierarchical VQ-VAE to generate high-resolution image

VQ-VAE Encoder and Decoder Training

htop, hmiddle htop, hmiddlea hbottom

Image quality in par with GANs, but with no mode collapse!

Original Reconstruction

Image copyright: https://openreview.net/pdf/ca805f55886316b9b980e0b981b4993675fc7e24.pdf 11¢
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B Recap

» Generative image models learn the margin density P(x) of natural images (explicitly or implicitly)
» Explicit density models

B PixelRNN Exact density evaluation, good samples, but inefficient training

B Variational Autoencoders (VAE) Complex-to-simple prior transformation, blurry samples

B Normalizing Flows Invertible prior transformation, limited modeling capacity

> Implicit Density Models
B Generative Adversarial Networks Game-theoretic approach, best sampling quality. Not robust

» Generative Image Models Beyond GANs

B VQ-VAE Combining modeling power of PixelRNN + efficient sampling of VAE. Very
promising sample quality, no mode collapse
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B Some useful resources

PixelRNN/PixelCNN:

Pixel Recurrent Neural Network, van den Oord et al., ICML 2016

Conditional Image Generation with PixelCNN Decoders, van den Oord et al., NIPS 2016

Pixel CNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications. Salimans et al., ICLR 2017

Varitional Autoencoders (VAE)

Kinma and Welling, Auto-Encoding Variational Bayes, ICLR 2014

Rezende, Mohamed and Wierstra, Stochastic Back-Propagation and Variational Inference in Deep Latent Gaussian Models, ICML 2014
VAE tutorial: https://arxiv.org/abs/1606.05908

Normalizing Flows
Tutorial from Li: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
Tutorial from Eric Zhang: https://blog.evjang.com/2018/01/nfl.html

Glow from OpenAl: https://openai.com/blog/glow/

Generative Adversarial Networks (GAN)

The official tutorial by Goodfellow: https://arxiv.org/abs/1406.2661

A good step-by-step tutorial: https://github.com/zurutech/gans-from-theory-to-production#deep-diving-into-gans-from-theory-to-production

A survey of GANs (advanced reading): https://arxiv.org/pdf/1906.01529v6.pdf 11¢
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